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AlJstract-ln this paper, a bifurcation problem for a solid sphere subjected to uniform tensile dead
loading Po at its boundary is examined within the framework of finite elastostatics. The sphere is
composed of a particular class of homogeneous isotropic incompressible nonlinearly elastic
materials. namely those of power-law type. One solution to the problem. for all values of Po.
corresponds to a homogeneous state in which the sphere remains undeformed while slre5.~ed.

However. for sufficiently large values of p", there is in addition II second possible configuration
involving an internal traction-free spherical cavity. The dependence on constitutive parameters of
the critical load at which bifurcation occurs is examined as well as the subsequent void growth. The
stres.'1 distribution after cavitation OI.."Curs is also d~'SCribt.-d. The results are obtain,,-d in closed analytic
form.

I. INTRODUCTION

Void nucleation and growth in solids have been of concern for a long time because of the
fundamental role such phenomena play in fmcture and other failure mechanisms. (&:c e.g.
Goods and Brown, 1979 for a discussion ofcavity nucleation in metals). The phenomenon of
sudden void formation ("caVitation") has also been observed experimentally in vulcanized
rubber by Gent and Lindley (1958). See also Williams and Schapery (1965). Nonlinear
theories of solid mechanics have been used recently to account for such phenomena. The
impetus for much of the recent theoretical developments have been supplied by the work
of Ball (1982). Ball has made an extensive study of a class of bifurcation prohlems for the
equations of nonlinear elasticity which model the appearance of a cavity in the interior of
an apparently solid homogeneous isotropic elastic body once a critical 19ad has been
attained. An alternative interpretation for such problems in terms of the growth of a
pre-existing micro-void has been given by Horgan and Abeyaratne (1986). Further inves
tigations of such bifurcation problems have been carried out by Stuart (1985), Podio
Guidugli et 01. (1986), Sivaloganathan (1986a,b), Chung et 01. (1987), Antman and Negron
Marrero (1987), Pericak-Spector and Spector (1988) and Horgan and Pence (1989a,b.c).
It is worth noting that cavitation can be shown to occur only when finite strain measures
are taken into account (see e.g. Horgan and Abeyaratne, 1986; Chung el al., (987). The
corresponding problems in linearized elasticity or in the infinitesimal strain theory of
plasticity do not exhibit such bifurcations.

The purpose of the present paper is to further investigate this bifurcation approach to
void nucleation. We carry out an investigation of the problem of static tensile dead-loading
of a solid sphere composed of a particular class of homogeneous isotropic incompressible
nonlinearly elastic materials. namely those of power-law type. While some of our results
could be obtained by specializing the work of Ball (1982), it is instructive here to provide
a direct ad /zoe treatment.
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In Section 2. we fonnulate the basic boundary-value problem that arises when a solid
sphere. composed ofan incompressible isotropic elastic material. is subjected to a prescribed
unifonn radial tensile dead-load Po on its boundary. One solution to this problem. for all
values of Po. corresponds to a tri"ial homogeneous state in which the sphere remains
undefonned while stressed. However, for sufficiently large values ofPo, one has in addition
other possible radially symmetric configurations involving an internal traction-free spherical
cavity. Such solutions have been shown by Ball (1982) to bifurcate from the homogeneous
solution at a critical value of Po. say Pcr. at which the homogeneous solution becomes
unstable. The possibility for these bifurcated solutions to exist depends on the constitutive
law for the material under consideration.

In Section 3, attention is confined to a particular class of homogeneous isotropic
incompressible elastic materials. namely those of power-law type. Such nonlinearly elastic
materials were first introduced by Ogden (1972) and have been employed in a wide variety
of problems since then (see e.g. Ogden. 1982. 1984). An extensive discussion of the properties
of this class of materials has been provided recently by Zee and Sternberg (1983). Our
interest here is in examining the dependence of the critical loads at which cavitation occurs
on the constitutive parameter n appearing in the definition of this class of materials [see
eqn (47)]. It is found that as the hardening parameter n increases. the critical load p" at
which bifurcation takes place also increases. The stress distribution in the sphere is also
described. An interesting feature concerning the principal stresses immediately after cavi
tation is the presence of a boundary layer near the cavity wall.

2. BIFURCATION PROBLEM FOR A srIlERE: FORMULATION AND SOLUTION

2. I. Formulal ion
We are concerned here with a sphere composed of a homogeneous incompressible

isotropic clastic material. Let the undeformed solid sphere be denoted by

Do = {(r, 0, eM 10 ::;;; r < h,O < () ::;;; 21l.0 ::;;; cjJ ::;;; 7t}.

The sphere is subjected to a prescribed uniform radial tensile dead-load of magnitude Po
on its boundary r = b. The resulting deformation is a one-to-one mapping which takes the
point with spherical polar coordinates (r, 0, cjJ) in the undefonned region Do to the point
(R. 0. <I» in the deformed region D. We assume that the deformation is radially symmetric
so that

R=R(r»O. O<r<h; R(O+)~O. 0=0, <I>=e/J. onDu (I)

where R(r) is to be determined.
The spherical polar components of the deformation gradient tensor Eassociated with

(I) are given by

E= diag (R(r), R(r)/r. R(r)/r) (2)

where the dot denotes differentiation with respect to the argument. The principal stretches
associated with the radially symmetric deformation (I) are

;., = R(r).
. . R(r)

)'/1 = )..p = --.
r

(3)

Incompressibility then requires that the Jacobian determinant J = Det E= I. which
upon integration yields
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(4)

where c ~ 0 is a constant to be determined. If it is found that c = 0, (4) implies that the
body remains a solid sphere in the current configuration. On the other hand, if c is found
to be greater than zero, then R(O+) = c > 0 and so there is a cavity of radius c centered
at the origin in the current configuration. In this event, the cavity surface is assumed to be
traction-free.

The strain-energy density per unit undeformed volume for a homogeneous isotropic
incompressible elastic material is denoted by

(5)

where ;'i (i = 1,2,3) are the principal stretches. The function W is invariant with respect to
interchange of the ;'i and is taken to satisfy the normalization condition W( 1,I, I) = O. In
the sequel, we proceed formally and assume that Wpossesses sufficient regularity properties
to permit the subsequent analysis.

The principal components of the Cauchy stress tensor! are given by

, c'W
'C ,i = I'j ;),- -P (no sum on i)

( I' i
(6)

where P is the hydrostatic pressure associated with the incompressibility constraint
;'1 ;'1;' 1 = I. For the radially symmetric deformation with principal stretches given by (3),
the principal stress components are

'CRR(r) = l'!WI(V '!,I',l')-p(r) }

'C(-ll-)(") = 'C,~~(r) = I'W!(I' 1,1',I')-p(r)

wherc, following 8all (1982), we have introduccd the notation

R ( ('1)113
V = r(r) = r = I + r J

(7)

(8)

Notice that in (7) we consider 'C(r) rather than the more conventional r(R). The subscript
notation on Win (7) denotes dilTerentiation with respect to the appropriate argument. In
(7) we have also used W!(v !, I', l') = W J(l' -!, to, lO), which follows from the invariance of
W with respt:ct to interchange of its three arguments;

The dead-load boundary condition now requires that

[
h J1'CRR(h) = Po R(h) = Po[V(b)]-1 (9)

where the constant Po > 0 is prescribed. We note that the boundary conditions of vanishing
shear tractions are satisfied identically. In addition if c > 0, then the condition f(\f a traction
free cavity surface

( 10)

must also hold.
In the absence of body forces, the sphere will be in equilibrium provided that div! = Q,

which will hold provided that
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CTRR R
-a,:-+2R[TRR-TeeJ = 0 (II)

holds throughout the sphere.
Thus. the problem to be solved is the following: for a prescribed ('alue of the dead

load traction Po > 0, we seek a pressure field p(r) and a constant c ;;a: 0 such that (II) and
(9) are satisfied where 'RR. 'ee. t4M» are given by (7) and (8). In addition if c > 0, then (10)
must also be satisfied.

2.2. Solutions
It may be readily shown that one solution to the foregoing problem, for all values of

Po. is

This corresponds to the trivial homogeneous state of deformation

R(r) = r

(12)

(13)

with corresponding stresses 'RR = tee = T4M» = Po.
Next we describe solutions for which c > O. corresponding to the presence ofa traction

free cavity at the origin. For this purpose. we adopt an approach developed by Horgan and
Pence (1989a) and rewrite the differential equation (II) in the form

( 14)

where we have used (7), (8). On integration of (14), we have

(15)

where

( 16)

On substitution into (7) we obtain

TRR(r) = -p(0)-2J(r), 0 < r < b. ( 17)

The traction-free cavity surface condition (10). together with (17) and 1(0) = O. now yields

1'(0) = O.

Finally the boundary condition (9) at r = b is satisfied if

- 2J(b) = Po[v(b)] 2.

(18)

(19)

The condition (19) may be written in a compact fashion on utilizing the change of
variables s -+ v in the integral (16). From (8) it is seen that this change of variable is one
to-one and invertible if and only if c > O. Introducing the function
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(19) may be written as
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~ - 2W(X) = W(X , x, x)

11.J3

(20)

(21)

(22)

Equation (22) was first established by Ball (1982) for the n~dimensional version of the
problem described here [see eqn (5.18) of Ball (1982)]. Thus. for a given dead-load Po.
solutions involving a traction-free internal cavity of radius c exist provided that c is a positive
root of (22). The associated pressure field is given by

(23)

The criticalloOlI Per at which an internal cavity may be initiated is found by formally
letting c .... 0+ in (22), and so

(24)

This result was first established by Ball (1982) in n-dimensions [sec eqn (5.22) of Rail
(1982»).

In summary then, we have seen that for all values of the applied dead-load traction
Plio one obtains the trivial solution (12) corresponding to the homogeneous state of defor
mation (13). Moreover, if positive roots c of (22) exist. then one obtains the additional
solutions involving a tmction-free internal cavity described above. Such solutions have been
shown by Rail (1982) to bifurcate from the trivial solution at the critical value Per at which
the trivial solution becomes unstable.

2.3. The criticallaad
Since the integml in (24) is improper, Per mayor may not be finite, and so cavitation

mayor may not take place. As regards the lower limit in (24), it is easily shown that

(25)

where p. denotes the shear modulus for infinitesimal deformations of the material. Thus by
l'Hopital's rule, the limit of the integrand in (24) is finite as v -+ I. An analogous issue was
discussed by Horgan and Pence (1989b) in the context of a composite sphere under tensile
dead-loading on its boundary. Consequently the question of whether or not Per is finite
depends on the behavior of W(v) for large values of stretch v. Sufficient conditions to
guarantee that Per be finite were given by Ball (1982) for both incompressible and com
pressible materials. Here we provide an ad hoc treatment of this issue. Suppose, for
example, that the strain-energy density per unit undeformed volume for a homogeneous
incompressible isotropic elastic material can be written in the polynomial form

(26)

so that
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WI (to) = al +2a:t'+ .. , +na.t··- 1
•

From (24), (27) we see that Pcr will be finite if

v·- 4 < V-I for large L".

Thus if

n<3

the value of Per given by (24) will be finite.
We now consider some specific examples.

(27)

(28)

(29)

Example I. Tht' neo-Hookean material. The strain-energy density function for this
material is given by

(30)

where ;'1' ;.:' ;.\, arc the principal stretches, and 11> 0 is the shear modulus for infinitesimal
deformations. By virtue of (3), (8) and (20) we thus have

Therefore

• II 'W(I') =-(1' 4+21'--3).
2

~V(I') ... Ill': for large r.

(3 I)

(32)

Thus comparing with (26), we get II = 2 and so by (2lJ), the critical load p", is tinite. In fact
Ball (19X2) has shown that

(33)

(Sec also Section 3 of the present paper.)

Example 2. The Mooney-Rivlin material. The strain-energy density function for this
material is

(34)

where ;." ;.! and ;.) arc the principal stretches, and 111' II! arc positive constants. By virtue
of (3), (8), and (20) we thus have

(35)

Therefore

(36)

Thus comparing with (26), we see that n = 4, and so by (29), the critical load Pcr is /lot

finite. Of course, it is well known that the Mooney-Rivlin model is not a very accurate
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constitutive model for large stretches (see. for example, Ogden, 1984, pp. 492-493 for a
discussion of biaxial deformation of a rectangular sheet).

Example 3. The Ril"lin-Saunders material. Experimental work of Rivlin and Saunders
(1951) suggests consideration of a strain-energy density function of the form

(37)

where f is. as yet. an unspecified function, with f(O) = 0 and III is a positive constant. By
virtue of (3). (8) and (20) we thus have

(38)

In what follows. we discuss two special forms of (38).

(39)

Clearly the special case ex = I corresponds to the Mooney-Rivlin material (34) considered
in Example 2 above. We see that if 40( > 2 (ex > 1/2).

Il 114~
JV(v)..... 2 for large v. (40)

On comparing with (26). we have" = 4cx. and so by (29) to ensure that Rr is finite. we
require that 40( < 3. i.e. IX < 3/4. and so Pcr is finite for the material (39) if

for oc ~ 1/2.

! < (X < ~. (41)

(42)

and so Pcr is again finite on comparing with (26) and (29). In summary then. for the material
(39). Pcr is finite if

0< IX < ~. (43)

We remark that the commonly used version of (39) with (X = 2 docs not yield a finite
value of Pcr. It is of interest to observe here that Simmonds (1989) has recently shown that
a circular rubber-like plate composed of the material (39) suffers a finite deflection under a
concentrated vertical load at its center only if ex > I. For a membrane it is shown by Fulton
and Simmonds (1986) th'lt the corresponding result holds only if ex > 2. See also the
discussion on pp. 281 and 282 of the book by Libai and Simmonds (1988).

(ii) Another special form of (37) has been considered by Gent and Thomas (1958). in
which f is taken to be the logarithm function. Thus we have

(44)

so that
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• IJ.I IJ.z 4t,3 -4v- 3
W I (l')=-(-4v- 3+4l')+- ,.

2 2 t,4+2v-·-2 (45)

(46)

and so from (24) we see that the critical load P"r is finite for the material (44).

3. SOLUTIONS FOR A CLASS OF INCOMPRESSIBLE ELASTIC MATERIALS

3.1. A class of incompressible elastic materials
We now consider a particular constitutive law, namely that of power-law type, and

provide an explicit solution for the bifurcation problem discussed generally in Section 2,
Thus consider

where ;'1' A.~, ).,1 are the principal stretches, and the constants IJ., n arc constitutive parameters.
Constitutive models of the form (47) were first introduced by Ogden (1972) and have been
widely investigated since then (see e.g. Ogden, 1982. 1984). The constant 11 in (47) is the
shear modulus for infinitesimal deformations and n is the hardening exponent. The special
case whenll = I in (47) corresponds to the neo-Hookean material.

We recall from Section 2 that the critical load Per is given by (24), Le,

Per = f" (t~~v:) dv (48)

where the notation (20), (21) is used. Expressed in the notation of (20). the strain-energy
density (47) can be written in polynomial form as

To ensure the existence ofPer. we recall from (29) that 2n should be less than 3, Le.

II < i.

(49)

(50)

[t is of interest to observe that a restriction similar to (50) also arises in the work of
Carroll (1987) concerned with the problem of inflation of a hollow sphere composed of the
material (47).

The response of the material described by (47) to certain basic pure homogeneous
deformations will now be discussed. A recent investigation of these issues was carried out
by Zee and Sternberg (1983). and we now summarize their results which are relevant to
our problem here. The pure homogeneous deformations considered are as follows:

(i) uniaxial stress
t'tt = t'H =0, t'H{)') = 1J.{).2n_;. On), )'3 = A.. )'1 = ).2 = ;. -1/2

(ii) equihiaxial stress
t'3J = 0, t'22(i.) = 11(i.2n_A.- 4n)').1 = ;'2 =,1",).3 = ).-2

(iii) pure shear
r22 = O. rltU.) = JI(,1" 2n_). - 2n), ;'1 = ).i 1 = A. ,1,,3 = I.

(51)

The normal stresses t'11()')' rn().), as well as r3J(i.), for each of the pure homogeneous
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Fig. I. Behavior or the power-law material under uniaxial stress.

deformations (51), ure monotonic increusing functions of l for 0 < A. < 00. The stress
stretch relation (5t) appropri..tte to (i) (uniaxial stress) is plotted in Fig. 1 for the values of
the exponent n given byn = 5/4, t. 3/4, 1/2, and 1/4 (cf. Fig. 3 ofZee and Sternberg, 1983).
Note th<lt the m..tterial h..mlcns as n increases. The graphs ofT n(A.) and t II (A.). corresponding
to the cases (ii) and (iii), arc qualitatively similar to Fig. I.

ft is of interest to remark on the character of the system ofgoverning partial dilTcrcntial
equations. namely the displacement equations of equilibrium

(52)

where CjjklOD are the components of the fourth-order tensor defined by

(53)

Necessary and sufficient conditions for ellipticity of the system of equations (52), (53) have
been obtained by Zee and Sternberg (1983). For the special case of the material (47), these
conditions are particularly simple. Thus from the results of Zee and Sternberg (1983, p.
85), ellipticity holds for the material (47) at all deformations if

(54)

In what follows, we assume that (54) holds. and so recalling (50). we thus have

(55)

3.2. Cavitation sollllions
Consider a quasi-static loading process in which the solid sphere is subjected to a dead

load Po that increases slowly from zero. Cavity formation and growth is described by the
relationship Po =Po(c) given in (22).
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For the material described by (47) [recalling the notation (3). (8)] we have ;., == t,-2.

i.. 2 = i.. 3 = L' and so the first derivative with respect to ;'2 is 0, i.e. W:(t·-:, I', t') == 0, and the
first derivative with respect to A, is given by

(56)

On using the notation (20), (21) we obtain from (49)

(57)

and so

(58)

When the relationship (22) between the applied pressure Po and deformed cavity radius
cis speciulizcd to the purticular strain-energy function (47) [and (58) is used], one obtains

(59)

Before proceeding with an unulysis of the relationship (59), it is convenient to record here
corresponding expressions for the stresses subsequent to cavitation given by (7). On using
(17), (18), (20). (21) we lind

(60)

while from (7) we obtain

(61)

On using W:(I' 2,1" Il) == O. (56) and (58) we obtain

(62)

and

(63)

where we recall from (8) thatl'(r) = (I + (c 3Ir3» Ill,

We confine attention to the range of values of 11 in (55), namely 1/2 ~ n < 3/2. For
specific values of n in this range, namely n = 1/2, 3/4, 1,5/4. the integrals in (59) and (62)
may be evaluated explicitly. The relevant integrals can be evaluated by using results of Ryshik
and Gradstein (1963). We assemble these integrals in the Appendix. The corresponding
expressions occurring in (59) then become

n - I.- z· Po = p, (64)
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n ::=: I : (neo-Hookean material)

n -~.
- 4'

(66)

Equutions (64)--(67) provide a relationship Po ::=: Po(c) between the dimensionless
upplied dead-load Po/ll and the dimensionless cavity radius clb. The critical load P~r is the
vulue at which the curve Po = po(e) bifurcates from the straight line c ::=: 0 corresponding
to the trivial homogeneous solution. On letting e .... 0+ in (64)-(67) and applying l'Hopital's
rule where appropriate. the critical load P~r is tabulated below.

n: 1/2 3/4 I 5/4
Pc,: jj l.S909jj 2.5p 4.7426/1

As one might expect. the values ofPer increase as the hardening parameter n increases. The
graphs of po(e) according to (64)-(67) are shown in Fig, 2. From Fig. 2 [and (64)]. it is
clear that the case n ::=: 1/2 is special. We recall from (54) that this is the limiting value of n
for which ellipticity holds.

The corresponding principal stresses. given by (62). (63). are

n - 1-- :.

(68)

(69)

n - J.
- 4'

(70)
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1.0

0.5

o 1

Po
JL

Fig. 2. Variation of the deformed cavity radius c with applied dead load Pu for a power-law material
with strain energy density given by (47).

n = I;

[( (3)-113 I ( (.(3)-413 ]
tRR(r) = 211 1+ rJ + 4 1+ r J

n - L
- 4·

(71)

(72)

(73)

(74)
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o

r

b
Fig. 3. Variation of the radial stress f ..(r) with undeformed radius r subsequent to cavitation for

a power-law material (47) with n '"' 5/4.

(75)

Graphs of 'IINN(r), 'IIHe(r) and 'II...,(r) for n = 5/4, are shown in Figs 3, 4. (The cor
responding graphs for n = 1,3/4 are qualitatively similar.) An interesting feature concerning
these stresses immediately after cavitation is the presence of a boundary layer near the

1.0002p
.. or

0.2 0'" o.e 0.8

r

b
Fig. 4. Variation of the stresses f_(r). f ..(r) with undeformed radius r subsequent to cavitation

for a power-law material (47) with n '"' 5/4.
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cavity wall. To see this. we have plotted the stresses in Figs 3. 4 for applied dead loads Po
slightly larger than Per. A similar boundary-layer phenomenon was observed by Horgan
and Pence (1989b.c) for the problem oftensile dead-loading ofa composite sphere composed
of two neo-Hookean materials. The implications of these boundary-layers in the stresses
are currently under investigation.
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APPENDIX: VERIFICATION OF (64)-(67) AND (68). (70), (72). (74)

Here we present the details of the derivation of eqns (64)-(67) and (68). (70). (72). (74). We first treat the
indefinite integral which is needed to evaluate both (59) and (62). (Constants of integration will not be written
down.)
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f
t'20-I_t'_"_'

1= J 1 dt'.
t' -

(AI)

It is convenient to record here the values of :!II-I and -4n-1 corresponding to n = If2, ),4. I. 5;4.
respectively. The integral (A I) will be decomposed into the two parts involving these exponents.

(i) Et'alualioll of I for n = 112
Whenn = 1/2.

n:
:!II-I:
-4n-l:

1/2
o

-3

3/4
(,'2

-4

I
I

-5

$/4
3'"J-

-6

(A2)

On using (A2). the definite integmls in (59). (62) are immediately evaluated to yield the desired expressions (64).
(68).

(ii) Em/l/alio" of I lor n = 3/4
First. we record here the indefinite integrals (2.128) of Ryshik and Gradstein (1963),

f
~ - 1 - b(3/+k-4)f~ k #- I
1·4:!, - (k - I )m'" - 1=1,' , (I(k - I) 1,4 - J=1, ,

where =, = II+ bl' '. a " O. b ,IIIU I > 0 arc constants.
When 11 = 3/4. from (AI) we sec th,lt

To evaluate I,. we use (AJ) with k =4. a"" -I, b = I. t = I. and get

The ,.,:eUlul integral of (AS) is evaluated as follows:

anu so. from (AS). we have

I It,'
I z = 3-' + 3- In -J-I'

t' t' -

In oruer to evaluate I, in (A4) we use a ch,IOge of variahles. i.e. r "" vU • and so

I, =f.J..~Ut' =f2f-~ =! In~ = ! In t,J:_I,
t,J_1 r-I 3 r+1 3 vJ"+1

(A3)

(M)

(AS)

(A6)

(A7)

(AS)

Thus on combining (A7) and (AS) in (A4) we obtain an expression for I. The definite integrals in (59) and (62)
arc then immediately evalual<:d to yield the desired expn.'ssions (65) and (70).

(iii) £mlual;on of I lor n = I
Whenn = I.

(A9)

On using (A9). the definite integrals in (59), (62) are immediately evaluated to yield the desired expres..sions (66),
(72).
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(iv) Et-alualion of I for n = 5/4
When" = 5,~.

M.-S. CHOU-WANG and C. O. HORGAS

(AIO)

To evaluate I•. we use (A3) with k = 6, a = -I, b = 1,1 = I, to get

The integral in (All) is evaluated by using (A3) with k = 3. a = -I. b = 1.1 = I. to get

(All)

(AI2)

The last integral in (AI2) can be evaluated using standard integral tables. For example (2.143) of Ryshik and
Gradstein (1963) gives

f dv I (I +1'+1'2)'12 I JJv
-- = - - In - - arctan -.
1'3_1 3 v-I .,/3 2+1'

Thus. on using (AI3). (AI2), (All), we obtain

I I I (I +1'+1'2)"2 I J31'
I.=-+----...--In --arctan·--.

51" 21" 3 v-I JJ 2+/'

In order to evaluate I ... we use a change of variable. i.e. r "" 1"12. to get

By using (2.145.3) and (2.145.7) of Ryshik and Gradstein (1963), we have

I (I +JV)2 I 2JI'-1
I, = - - In _.__.- + -- arctan·~·· ,>0

. 6 I-Jv+v J3 J3

I (JV-I)l 1 2Jv+ I
+ - In + - arctan ~'---.

6 1+Jv+v J3 JJ

(A 13)

(AI4)

(1\15)

(AI6)

Thus on combining (A 14) and (AI6), we obtain an exprt:ssion for I from (A 10). The delinite integrals in (59) and
(62) are then readily evaluated to obtain the desired expressions (67) and (74).


